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ABSTRACT: An investigation was conducted to optimize the application of the multi-model ensemble (MME) technique
for statistical downscaling using 1- to 6-month lead hindcasts obtained from six operational coupled general circulation
models (GCMs) participating in the APEC Climate Center (APCC) MME prediction system. Three different statistical
downscaling MME methods (SDMMEs) were compared and estimated over South Korea. The study results revealed that
under the same number of ensemble members, simple changes in the statistical downscaling method, such as an applicative
order or a type of MME, can help to improve the predictability. The first method, the conventional technique, performedMME
using data downscaled from the single-model ensemble means of each GCM (SDMME-Sm), whereas the second and third
methods, newly designed in this study, calculated the simple ensemble mean (SDMME-Ae) and the weighted ensemble mean
(SDMME-We) after statistical downscaling for each member of all model ensembles. These three methods were applied to
predict temperature and precipitation for the 6-month summer-fall season over 23 years (1983–2005) at 60 weather stations
over South Korea. The predictors were variables from hindcasts integrated by the six coupledGCMs. According to the analysis,
both SDMME-Ae and SDMME-We showed increased predictability compared with SDMME-Sm. In particular, SDMME-We
showed more significant improvement in long-term prediction. In addition, in order to assess the dependence of predictability
on the number of downscaled ensemble members and the type of MME, an additional experiment was performed, the results
of which revealed that the model performance was closely related to the number of downscaled ensemble members. However,
after approximately 30 ensemble members, the predictive skills became rapidly saturated when using the SDMME-Aemethod.
SDMME-We overcame the limited skills that can be achieved by merely increasing the number of downscaled ensemble
members, thereby improving the performance.
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1. Introduction

In the past decade, multi-model ensemble (MME) tech-
niques have been developed to improve the accuracy in
seasonal predictions by reducing uncertainties associated
with individual models (Krishnamurti et al., 1999; Peng
et al., 2002; Yun et al., 2003; Palmer et al., 2004). Much
of the effort in developingMMEmethods has been devoted
to producing skilful seasonal forecasts, in order to provide
users with relatively reliable long-term information using
global climate models (e.g. Krishnamurti et al., 1999;
Palmer and Shukla, 2000). Although the MME predic-
tion based on global climate models is useful in many
respects, it remains incapable of being used for agricultural
or hydrological purposes, which require station-based or
high-resolution data, due to the low-resolution grid system
of themodels with an approximate horizontal dimension of
100–300 km.
Recently, dynamical and statistical downscaling tech-

niques have been rapidly developing as a method of
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overcoming the constraints of the global climate prediction
model, thereby offering high-resolution data (Kang et al.,
2009; Vasiliades et al., 2009; Ahn et al., 2012). Dynami-
cal downscaling using a regional climate model produces
physically and dynamically balanced data. However, it has
shortcomings in composing the MME system because of
the enormous computing time and storage capacity for
each ensemble member (Chen et al., 2012) and the sys-
tematic model bias (Ahn et al., 2012). Therefore, statistical
downscaling techniques are often used to effectively pre-
dict the station-based climate by taking theMMEmembers
into consideration and using model output statistics. The
results derived from the statistical downscaling may retain
considerable uncertainties because of systematic errors in
the global climate model output (Glahn and Lowry, 1972;
Wilks, 1995). By applying the MME scheme to predictors
or predictands, however, these uncertainties can be par-
tially reduced (Kang et al., 2009; Juneng et al., 2010).
The Asia-Pacific Economic Cooperation Climate Center

(APCC) has been operating an MME seasonal forecast
system by collecting 6-month lead predictions from the
world’s leading research institutions since 2005 (Min
et al., 2009). They have derived not only global-scale
MME seasonal predictions from general circulation

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.



S. KANG et al.

Table 1. Description of six GCMs used as predictors.

Model acronym Institution(country) Model resolution Ensemble size References

APCC APEC Climate Center (Korea) T85L26 5 Jeong et al. (2008)
NCEP NCEP Climate Prediction Center (USA) T62L64 15 Saha et al. (2006)
PNU Pusan National University (Korea) T42L18 5 Sun and Ahn (2011)
POAMA Bureau of Meteorology Research Centre (Australia) T47L17 10 Zhao and Hendom (2009)
SNU Seoul National University (Korea) T42L21 6 Ham and Kang (2011)
UH University of Hawaii (USA) T31L19 10 Fu and Wang (2004)

models (GCMs), but also regional forecasts using statis-
tical downscaling models (Kang et al., 2007; Chu et al.,
2008; Kang et al., 2009; Min et al., 2011). Kang et al.
(2009) have shown that 3-month lead forecasts based
on the GCM results from APCC can be skilfully used
to predict local variables over South Korea by using an
appropriate statistical downscaling method. Subsequently,
Min et al. (2011) suggested a modified procedure of the
predictor selection using basically the same model in
order to account for the physical relationships between
predictors and predictands. Given that a large ensemble
size can lead to skill improvement (Palmer et al., 2000;
Palmer et al., 2004), however, their experiment down-
scaled by a single-model ensemble (SME) retains limited
skill due to the restrictive ensemble size.
APCC recently developed a 6-month lead MME predic-

tion system based on the prediction information produced
by ocean–atmosphere coupled models through coopera-
tion with six research institutes (Table 1). An optimal sta-
tistical downscaling method based on the MME approach
in terms of station-based 6-month lead summer-fall (June
to November) precipitation and temperature predictions is
investigated using the data. Considering the characteristics
of individual members, two statistical downscaling meth-
ods are newly designed and explored under the statistical
downscaling framework of APCC by evaluating and com-
paring the result with the previous one (e.g. Kang et al.,
2009; Juneng et al., 2010; Min et al., 2011).
This paper is organized as follows. In Section 2, we

present the use of datasets and statistical downscaling
methods, including those newly designed for this study.
The results and conclusions are illustrated in Sections 3
and 4, respectively.

2. Data and methodology

2.1. Data

The predictands of statistical downscaling are surface tem-
perature and precipitation of the boreal summer-fall sea-
son (June to November) located at 60 weather stations
over South Korea. To construct the downscaling model and
verify the predictions, we used the observed precipitation
and temperature data for the 23 years from 1983 to 2005,
as provided by the Korea Meteorological Administration.
Figure 1 shows the locations of the 60 weather stations as
well as the topography of South Korea.
The predictors of the statistical model are multiple vari-

ables derived from 6-month lead hindcasts for summer-fall

Figure 1. Locations of 60 weather stations (black dot) and topography
(shaded, m) of South Korea.

produced by six operational coupled GCMs, participat-
ing in the APCC 6-month lead MME prediction system.
The 23-year hindcast period (1983–2005), for which the
APCC archive is available, is used in this study. The indi-
vidual model is described in Table 1.
As in the study by Min et al. (2011), anomaly fields

of 500-hPa geopotential height (Z500), sea level pressure
(SLP) and 850-hpa temperature (T850) are used as poten-
tial predictors for temperature, while predictors for the pre-
cipitation are comprised of the SLP and Z500 anomalies.
These potential predictors are selected tominimize the arti-
ficial skill in choosing the predictor, so-called screening
(Delsole and Shukla, 2009), by considering the feasible
physical relationships between the predictors and predic-
tands (Kang and Shukla, 2006; Min et al., 2011).

2.2. Methodology

Our statistical downscaling approach is comprised of two
major steps. The first step is a screening procedure to select
the optimal predictors. In this stage, a moving window
technique, one of the pattern projection methods, is used
(e.g. Kug et al., 2008a; Kang et al., 2009;Min et al., 2011).
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In this method, the area over the whole globe is scanned
to find the region highly related to the predictand using a
movable window with a size of 15 × 10 latitude–longitude
grid points. A movable window with the largest sum of
correlation coefficients between the predictand and the
predictor is identified, and then the projection of predic-
tors within this optimal window is obtained. In the second
step, a statistical model is constructed and the target vari-
ables are predicted using the selected predictors. The linear
relationship between the target variable and the predictor
projection is estimated and modeled using simple linear
regression (Juneng et al., 2010). In estimating the opti-
mal window and the regression coefficient, the relationship
between each point of predictand and each ensemble mem-
ber from the individual model is considered independently.
This means that the optimal window and the regression
coefficient are calculated 3060 times (a total of 60 predic-
tand points× 51 of the ensemble size) for forecasting a cer-
tain season. A double cross-validation method is applied to
the statistical downscaled results constructed by the previ-
ous steps, in order to avoid overfitting of random noise,
which is a common problem for all empirical prediction
models (Yu et al., 1997; Feddersen et al., 1999; Juneng
et al., 2010; Min et al., 2011). A detailed description of
the model is presented in Min et al. (2011) and Kang et al.
(2009).
The following three different statistical downscaling

methods are designed on the basis of the same statisti-
cal model, and the results are compared to explore the
appropriate statistical downscaling MME method. In the
experimental design, the conventional MME methods are
adopted because this study is focused on how to improve
the predictive skill by combing the MME method and
statistical downscaling instead of developing the MME
method or the downscaling model.

a. SDMME-Sm: The conventional technique, used in
previous studies, estimates the MME mean using
data downscaled from the SME means of the cou-
pled GCMs (Kang et al., 2009; Min et al., 2011)
(Figure 2(a)).

b. SDMME-Ae: Newly designed in this study, which
calculates the MME mean by simply averaging all
model ensembles applied to statistical downscaling
(Figure 2(b)).

c. SDMME-We: The newly designed SDMME-We is
similar to SDMME-Ae, but uses a weighted ensem-
ble scheme instead of the simple average method for
MME mean (Figure 2(c)). In this method, the mem-
bers with a correlation coefficient greater than a thresh-
old number at each point are chosen after perform-
ing cross-validation. To estimate the suitable threshold
number, we performed an empirical test of whether
at least one ensemble member from each model has
a temporal correlation coefficient (TCC) greater than
the threshold number for 1–6month lead temperature
and precipitation hindcasts. In selecting the proper cri-
terion, we set 0.05 intervals for the threshold number
from 0.20 to 0.50, and calculate the number of the

ensemble members having a TCC greater than each
threshold (Table 2). According to the results, more than
one ensemble member in each model can be involved
in calculating SDMME-We when the threshold num-
ber is 0.3. Therefore, we choose TCC of 0.3 as the
criterion for the SDMME-We method. Then the MME
mean with a weighting is calculated as follows:

SDMME −We =
n∑
j=1

⎛⎜⎜⎜⎜⎜⎝

Corrj
n∑
i=1

Corri

× Fj

⎞⎟⎟⎟⎟⎟⎠
∕n

where, the number of members with correlation coeffi-
cients greater than 0.3 is defined as n, and the correlation
coefficient and forecast of the ith member are indicated as
Corri and Fj, respectively. The members having poor skill
are excluded in the method rather than excluding the mod-
els of poor skill. This approach is taken in order to consider
as many climate models as possible, because the individ-
ual models produce their own climate signal. Thus, at least
one ensemble member per the individual model is consid-
ered in MME. However, it does not indicate that the each
model should have the same weighting.
The previous studies (e.g. Kang et al., 2009; Min et al.,

2011) have shown that the statistically downscaled hind-
casts (SDMME) show a relatively better performance than
the results from GCMs simply interpolated (IMME) to in
situ observation sites. Consequently, this study focused on
evaluating the predictabilities of the SDMME hindcasts
with the three methods rather than comparing between the
results from IMME and SDMME. The performance of the
MME mean using data simply interpolated from the SME
means (IMME-Sm) is also evaluated only briefly.

3. Results and discussions

First, the interannual variabilities of the downscaled tem-
perature and precipitation hindcasts derived from the three
methods are analysed. Furthermore, we compare the skill
of SDMME hindcasts with that of IMME hindcasts in
order to briefly show the performance of the raw model
output. Figure 3 shows the distributions of the temporal
correlation coefficients (TCCs) for downscaled temper-
ature and precipitation by the three different SDMMEs
and the IMME during summer at the 60 stations. In this
figure, TCCs of 0.37, 0.43 and 0.55 indicate 90, 95 and
99% confidence levels, respectively. IMME-Sm has TCCs
lower than 0.37 at all stations with an average of −0.1 for
3-month lead precipitation, which is not statistically sig-
nificant. However, SDMME-Sm shows positive TCCswith
an average of 0.4 at 55 of the stations. The average TCC for
SDMME-Ae over all the stations is 0.56, which is signifi-
cant at the 99% confidence level. Considerable improve-
ment is achieved when SDMME-We is compared with
SDMME-Sm and SDMME-Ae in terms of TCC, although

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. (2014)
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Figure 2. Schematic diagrams of the three experiments performed.

SDMME-Ae is already sufficiently higher than the 95%
confidence level at most of the stations. This indicates
that the precipitations predicted with SDMME-We are sta-
tistically significant at almost all of the stations, while
SDMME-Sm has less skill compared with SDMME-We
and SDMME-Ae.
As in the case of precipitation, SDMME-We also shows

the highest TCC for temperature, followed in order by
SDMME-Ae, SDMME-Sm and IMME-Sm. TCC derived
from IMME-Sm for temperature also reveals the lowest
value with an average of −0.09 compared with that from
SDMMEs. The low skill of IMME can be attributed to
the difficulty experienced by the current dynamical mod-
els in predicting a local variability correctly at each grid
point, although they are capable of capturing a large-scale
pattern related to a local variability over the continen-
tal region and extratropical oceans (Kug et al., 2008b).
The differences in averaged TCCs between SDMME-We
and SDMME-Sm are 0.37 and 0.36 for precipitation and

Table 2. The number of models having at least one ensemble
member with temporal correlation coefficient (TCC) greater than

each threshold number.

Season JJA (1–3month lead) SON (4–6month lead)

Threshold
number

PREC TEMP PREC TEMP

0.20 6 6 6 6
0.25 6 6 6 6
0.30 6 6 6 6
0.35 6 5 6 5
0.40 6 5 6 5
0.45 6 5 6 5
0.50 4 4 6 5

temperature, respectively, which are statistically signifi-
cant at the 99% confidence level based on Fisher’s trans-
formation. This implies that the predictability decreases
considerably for both temperature and precipitation when

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. (2014)
on behalf of the Royal Meteorological Society.



SEASONAL FORECAST OVER S. KOREA USING APCC MME PREDICTION SYSTEM

Figure 3. Temporal correlation coefficients (TCCs) for 3-month precipitation (PREC; upper panel) and temperature (TEMP; lower panel) hindcasts
in JJA at each station by applying IMME-Sm (the first column), SDMME-Sm (the second column), SDMME-Ae (the third column) and SDMME-We

(the last column).

the information from individual ensemble members is dis-
regarded during MME. In other words, the downscaled
temperature and precipitation hindcasts are sensitive to the
characteristics of each ensemble member.
We also tried to determine whether these techniques are

significant up to 4- to 6-month lead hindcasts, as well
as 1- to 3-month. Figure 4 illustrates the monthly mean
TCCs for 1- to 6-month lead temperature and precipita-
tion hindcasts. The TCCs are calculated at each station and
then averaged for all stations. The TCCs of SDMME-Sm
are lower than those of SDMME-Ae and SDMME-We
and more variable for both temperature and precipita-
tion throughout the entire lead period. This implies that
SDMME-Sm is more sensitive to individual information
contained in the downscaled SME data because the num-
ber of MME members is relatively fewer than that of
both SDMME-Ae and SDMME-We. Thus the TCCs of
SDMME-Ae and SDMME-We show a more stable pat-
tern with a steady decrease as the lead month increases.
Moreover, SDMME-Ae and SDMME-We provide a suffi-
cient skill improvement compared with SDMME-Sm for
each lead period, as shown in Figure 4. In particular, the
performance of SDMME-We is remarkably improved in
prediction for both temperature and precipitation with a
99% confidence level throughout all the leads.
An ensemble spread can be used as an indicator to mea-

sure the predictability or uncertainty in issuing a deter-
ministic forecast (WMO, 2012). In order to examine the
reason why SDMME with all model ensembles has good
performance, we also calculated the mean spread of the
ensembles used in SDMME-Sm, and SDMME-Ae for pre-
cipitation and temperature hindcasts in summer and fall
(Table 3). It shows that the spread of SDMME-Ae is

Figure 4. Monthly temporal correlation coefficients (TCCs) of (a) pre-
cipitation (PREC) and (b) temperature (TEMP) anomalies for 6-month

lead (June to November) hindcasts.

lower than that of SDMME-Sm, especially in precipitation
for JJA (June–August). Considering that a large spread
generally indicates low predictability, SDMME-Ae pro-
vides superior capability in seasonal forecasts compared
with SDMME-Sm. The low spread of SDMME-Ae arises

© 2014 The Authors. International Journal of Climatology published by John Wiley & Sons Ltd Int. J. Climatol. (2014)
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Table 3. Mean spread of ensembles used in SDMME-Sm and
SDMME-Ae for precipitation (PREC) and temperature (TEMP)
hindcasts in JJA (1–3month lead) and SON (4–6month lead).

Season Variable Method

SDMME-Sm SDMME-Ae

JJA (1–3month lead) PREC 2.38 0.19
TEMP 0.04 0.04

SON (4–6month lead) PREC 0.11 0.10
TEMP 0.04 0.04

because the level of uncertainty in the forecast is reduced
by considering all ensemble members. This indicates that
SDMME-Ae is better than SDMME-Sm in picking the
predictive signal and filtering noise out.
The predictability is also estimated using categorical

estimations such as Heidke skill score (HSS), hit rate (HR),
and false alarm rate (FAR), as well as quantitative estima-
tions such as TCC, pattern correlation coefficient (PCC)
and root mean square error (RMSE). PCC is calculated by
comparing the spatial distributions of temperature and pre-
cipitation anomalies to the observation for each year and
then averaging the results for all years. Here, HSS, HR
and FAR are calculated by defining three categories: below
normal (<− 0.44 �), normal (≥ − 0.44 � and 0.44 �)
and above normal (> + 0.44 �). Each category con-
tains approximately 33, 34 and 33% of the total events,
respectively. Table 4 shows the scores of 1- to 3-month
and 4- to 6-month lead hindcasts for precipitation and
temperature. SDMME-We shows the highest TCCs for
the target variables in both seasons at a 99% confidence
interval. The coefficients are 0.77 and 0.69 for precipita-
tion and temperature during summer (JJA), and 0.74 and
0.84 during fall (September–November, SON), respec-
tively. SDMME-We also shows the highest PCC, exceed-
ing 0.62 for both variables. As for RMSE, SDMME-We
shows the lowest RMSE, followed by SDMME-Ae and
SDMME-Sm. This indicates that SDMME-We can pre-
dict temporal and spatial variations relatively well com-
pared with the other methods. As seen in Table 4, the HSS
and HR of SDMME-We are higher than those of the other
methods for precipitation and temperature. In addition,
the FAR of SDMME-We is lower than that of the other
methods, implying that SDMME-We has the best pre-
dictability in terms of these categorical estimations. Over-
all, SDMME-We has the greatest capability for predicting
both the temperature and precipitation over 6 months, in
accordance with various assessments.
These good predictabilities in the newly designed meth-

ods are attributed to their ability to consider all avail-
able members even from the same single model. Gener-
ally, ensemble members from a single model are derived
from slightly different initial states and different model
set-ups, implying no distinct differences between SMEs.
However, the individual member provides a range of infor-
mation owing to the combined effect of various dynamical
instabilities, particularly baroclinic eddies in the extrat-
ropics (Stern and Miyakoda, 1995). This means that each
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ensemble member is important because it offers additional
information apart from the ensemble mean, although they
are from the same model. Consequently, the use of all
members enables SDMME-Ae and SDMME-We to offer
better predictability by considering more of the large-scale
information, compared with SDMME-Sm.
We conducted an additional experiment using the

first five ensembles per model with SDMME-Ae and
SDMME-We in order to inspect the degree of contribution
of the different ensemble sizes from each GCM. In this
experiment, we do not consider SDMME-Sm because the
different ensemble size is less important in the method.
Figure 5 compares the performances obtained with the
different ensemble size depending on the model and the
same number of ensemble members. The TCC derived
from the five members is slightly lower than that from all
members but still quite high. This difference may have
been due to the reduced total ensemble size, or the removal
of the implicit weight of the models. The total number of
ensemble members is 30 when only five members are cho-
sen, which is smaller than the ensemble size of 51 from all
members. However, 30 members are enough to improve
the skill (more described in Figure 7), which in turn does
not lead to a conspicuous increase of predictability. In
the model weighting terms, the impact of three models,
NCEP, POAMA and UH, having more than ten ensemble
members is reduced when the same ensemble size from
the individual models is used. Despite their sufficiently
good ability in long-term forecasting, these models did
not exhibit any superiority over the others in the SME
predictability (Figure 6). The different ensemble size
from each GCM might increase the predictive capability
compared with that obtained having the same number
of ensemble members per model, but it does not cause a
great discrepancy.
To illustrate the performance of the downscaled GCM

outputs for each method, the TCCs between the down-
scaled GCM outputs and the observation at each sta-
tion are calculated and then averaged for the 60 stations
(Figure 6). Figure 6 shows that the predictive ability gen-
erally decreases in the order of SDMME-We, SDMME-Ae
and SDMME-Sm. Especially, SDMME-We generates the
most pronounced predictability from the limited infor-
mation of the individual GCM outputs. This is similar
with the results of previous studies (e.g., Robertson et al.,
2004; Yun et al., 2005; Kug et al., 2008b) that used the
empirical-weighted MME. Kug et al. (2008b) attributed
the result to the skill dependence on the past performance
of the individual member. If the predictive skill of individ-
ual member exceeds a certain level, the weighted MME
method would not significantly improve predictability.
However, seasonal predictions have relatively poor skills
over continental regions and extratropics. Therefore, the
weightedMMEmethod using only reliable predictions has
better performance than that of SCM. Furthermore, the
skill of MME is the highest, regardless of the method. This
agrees with the claims of Leith (1974), Doblas-Reyes et al.
(2000) and Palmer et al. (2000) that the predictive skill of
the ensemble mean is, on average, relatively higher than

Figure 5. Comparison between the temporal correlation coefficients
(TCCs) derived from all ensemble members and the first five mem-
bers per each model for 6-month precipitation (PREC) and temperature

(TEMP) hindcasts.

that of any individual member because these MME meth-
ods might reduce some of the systematic bias.
To explain the superior predictability of SDMME-We

over SDMME-Ae and SDMME-Sm, we investigate the
sensitivities of predictabilities to the number of down-
scaled ensemble members. First, we conduct MME exper-
iments by changing the number of statistically downscaled
ensemble members for both seasons. MMEmeans are cal-
culated using simple composite averages by increasing the
number of ensemble members from 5 to 50. The mem-
bers of each ensemble are selected from 51 total ensemble
members in Table 1. Each ensemble having the same num-
ber of members is randomly produced 1000 times. Then,
the TCC means are calculated for each and every combi-
nation. Figure 7 shows that TCC increases in proportion
to the increase in the number of downscaled ensemble
members. According to the results, temperature is par-
ticularly sensitive to the chosen members and the TCCs
are rapidly saturated after the number of ensemble mem-
bers exceeds approximately 30, in agreement with Palmer
et al. (2004). The mean TCC for SDMME-We is higher
than any other results, as illustrated in the previous figures,
and almost corresponds to the SDMME-Ae TCC when 50
ensemble members are used. This implies that predictabil-
ity depends on the number of downscaled ensemble mem-
bers in the SCM, until they number approximately 30, and
that the weighted MME method can complement the lim-
itation of obtainable predictability by increasing the num-
ber of downscaled ensemble members. Although the mere
increase in the number of ensemble members increases the
predictability of the model (Palmer et al., 2000; Palmer
et al., 2004; Robertson et al., 2004), more studies are
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Figure 6. Temporal correlation coefficients (TCCs) between the downscaled GCM output used in the three methods and the in situ observations for
precipitation (PREC; left column) and temperature (TEMP; right column) anomalies in JJA (1–3month lead; upper panel) and SON (4–6month

lead; lower panel), averaged over all stations.

Figure 7. Changes in temporal correlation coefficients (TCCs) of precipitation (PREC; left column) and temperature (TEMP; right column) hindcasts
for JJA (1–3month lead; upper panel) and SON (4–6month lead; lower panel) as the number of downscaled ensemble members is increased from

5 to 50. The TCCs are calculated for each and every MME result using the SDMME-Ae method.

needed to explain the positive relationship between the
downscaled ensemble size and predictability.

4. Concluding remarks

In this study, we estimated and compared the accu-
racy of three different statistical downscaling methods,
SDMME-Sm, SDMME-Ae and SDMME-We, by apply-
ing them to 6-month lead hindcasts from 6 coupled GCMs
for the optimal operational use of the APCC regional
long-range MME prediction system. For the experiment,
we produced and analysed the statistically downscaled

summer-fall temperature and precipitation hindcasted by
the coupled GCMs for the 23 years from 1983 to 2005 for
60 in situ weather stations over South Korea.
According to the analysis, SDMME-We showed the best

performance in terms of temporal and spatial patterns of
the observation. According to the quantitative and categor-
ical estimations of TCC, PCC, RMSE, HSS, HR and FAR,
the SDMME-We predictability was statistically significant
up to a lead-time of 4–6months. This SDMME-We pre-
dictability appeared at the downscaled individual GCM
output as well as the MME mean, which reveals the good
predictability offered by SDMME-We from the limited
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information of the individual GCM output. Furthermore,
the skill of MME was superior to that of any single indi-
vidual prediction.
Through additionalMME experiments, we observed that

the increased number of downscaled ensemble members
improved the predictive skill. Although previous studies
(e.g. Palmer et al., 2000; Palmer et al., 2004; Robertson
et al., 2004) already referred to the positive relationship
between the number of ensemble members and the skills
in MME with GCM output, we found that the increased
predictability became saturated after approximately 30
downscaled ensemble members. Despite this limitation in
the predictability improvement gained through increasing
the number of downscaled ensemble members, we suggest
that the weighted MME technique can be used to comple-
ment this limitation. This result supports the contention of
previous studies (e.g. Robertson et al., 2004; Yun et al.,
2005; Kug et al., 2008b) that the empirical-weighted
MME can induce skilful prediction. Further studies will
be necessary to determine how the increased number
of downscaled ensemble members triggers the skill
improvement.
Our study reveals that simple changes, such the applica-

tive order or MME method, can improve the predictability
considerably, under the same number of ensemble mem-
bers from GCMs. This result is applicable to dynamical
downscaling methods based on MME.
Although double cross-validation is employed in this

study, as highlighted by Delsole and Shukla (2009), even
good performance in a model’s cross-validation mode
does not necessarily guarantee that it will perform well in
real-time forecasts. This reveals the need for future study
to demonstrate the actual usefulness of this approach using
independent datasets with substantial long-period.
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